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1. INTRODUCTION

In a previous report, TRG-156-SR-l, the two-dimensional

cavity theory was applied to ventilated flow around surface-piercing

struts. The strut cross-section shapes considered were rectangular,

circular, triangular, and parabolic. The theoretical results

obtained for cavity length and cavity drag were compared with experi-

mentally obtained values for a series of cases. The results

indicated that two-dimensional theory is inadequate for length pre-

diction; however, the results obtained for cavity drag showed sub-

stantial agreement.

The present report offers a three-dimensional analytic

approach to predicting cavity length. It also compares the

theoretical results with length measurements that were made in cavity

side photos published by B. Perry [I] and A.D. Hay (2].

In our analysis of the Hay experiments special emphasis

was placed on the different flow states that can be observed with

increasing speed. For instance, at high speed, the strut cavity is

sealed off from the atmosphere by the surface flow, causing a change

in flow state.

Further comparisons are carried out between experimental

drag and theoretical drag, calculated on the two-dimensional basis.

The results obtained for cavity length can be used as a

guide for developing further the theory of cavity shape. Such theory

may form the basis for a three-dimensional drag analysis. Further-

more, information about cavity shape may be applicable to the

deaigh of a strut-hydrofoil-system. The most practical way of
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providing the ventilation required by a hydrofoil cavity is to have

the strut cavity open to atmospheric air, and to have it reach down

to the strut-base for supercavitating foils or to the strut-and

foil-base for base-ventilated foils.

II
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2. THREE-DIMENSIONAL ANALYTIC APPROACH TO CAVITY LENGTH

We consider a cavity behind a surface-piercing strut, where

the cavity is open to atmospheric air and reaches down to the base

of the strut. The strut base is in z - -H (H - strut submergence).

The xy-plane of the coordinate system is in the undisturbed free

surface, positive x being opposite to the incident uniform flow of

speed U. The vertical coordinate z is positive upwards. Regarding

strut geometry, we only consider strut submergence H; we do not

account for the lateral dimension d (strutbeam). The cavity length

at z = 0 is denoted by L.

Jz

x L y

cav~it~y/

r

Fiaure 1: Coordinate system and notation for
ventilated cavity.
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The flow is considered as potential flow, thus the velocity

potential is

(1) I--Ux+6

Here 6 is the potential of the disturbance velocities. By Bernoulli's

equation, the dynamic boundary condition that the pressure in the

cavity walls equals the atmospheric pressure is - neglecting

ix2 6y2, 6z2 _ given by

(2) 6x V

where g is the acceleration due to gravitation. Assuming slender

cavities we apply (2) at y = o in the cavity region. By integrating

(2) with respect to x, we then obtain the potential 6, applicable to

y = o in the cavity region, namely

(3) 6(x, o, Z) + h(z)

Here h(z) is an unknown, z-dependent constant of integration. The

6 z-velocity is then

(4) 6z (X, 0, Z) = + h' (z)

in the cavity region; h'(z) represents 6 z(o, o, z). Eq. (4) can also

be obtained directly from (2), if we use the condition of irrota-

tionality
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(5) 6xz -6 ZX " 0

which in conjunction with (2) yields

(6) 6xz - 6ZX -f .

Applying this in y - o and integrating Azx with respect to x, Eq. (4)

is obtained. Assuming the derivatives of A to be continuous at the

point (-L, o, o), we apply at this point the free surface boundary

condition

(7) (Axx +UA.).-A" 0

J However, (2) implies that

(8) 6xx . 0

and thus

(9) Az W 0

Hence, we obtain from (4)

(10) AZ(-L, o, o) - - + h'(o) - 0

"TECHNICAL RESEARCH GROUP
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From (10) we conclude that

(ii)h , (0) .
V @

In this way h'(z) is determined for z - 0.

We apply now, instead of Eq. (4), the approximation

(12) 0z (x,o,zO)o +u

replacing h'(z) by h'(0). The reasoning is that relevant experiments

show an approximately constant upward velocity on the front of the

strut at depths located between the tip end region and the free sur-

face region. Certainly, it is incorrect to apply h'(0) for this

velocity; (12) has to be looked upon as an assumption.

z z

x x

IgH I z -H

Figure 2:

Disturbance velocity 0x(xoz); Disturbance velocity 0z(XoZ);

according to Eq. (2) - it is according to Eq. (12) - it ts

independent of x. independent of z.

* (Velocities apply to the cavity region which is hatched.)

IT
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We now consider the cavity shape. The cavity walls are

composed of streamlines, and the cavity rear is also considered as a

streamline. The differential equation of this rear streamline is

dxr 2 z(13) •r = (•z)r- gzxr -U

dz~z)

The integration

(14) fr(, -l U2 )dzrl Jr (gx; + gL)dx;
-H O

leads to

S(15) x= 2 _ 2z/U - L.

r-Vzr r g

f Considering that xr = 0 for zr = -H we find

(16) L Z

Thus we have

(17) xr \ 2z H

The cavity length

(18) 1 - IxrI
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can be obtained from (17) at any depth zr. The final result -

nondimensionally and dropping the subscript r - is

U22U2
(19) J.LZ)U~ z z 1++ fý
Here U2 appears as a parameter; for -2 const. and any submergence

H the rear shapes given by Eq. (19) are geometrically similar as

the submergence His varied. The parameter U2
gRis the square of the

Froude number f (based on length H), where f is given by

(20) f =.i "

J It is also the reciprocal of half the nominal base cavitation number

(21) ca(-H) =

TECHNICAL RESEARCH GROUP
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3. COMPARISON WITH EXPERIMENTAL CAVITY LENGTHS

a. Different Flow States

Observed ventilated flows in real fluids depend on the
U d add UH

three parameters 0 and 1 . The speed parameter
U U

related to the nominal cavitation number of the incident flow at

depth H and also to the cited Froude number of the "strut-incident

flow" system, governs the cavitation mechanism and the occurring
dsurface waves. The strut beam to submergence ratio, q , essentially

influences the disturbance velocities generated by the strut. (The

strut beam d in case of circular struts is the diameter; in case of

rectangular struts it is the width). The Reynolds number too, E = Re,

representing the ratio of mass to viscosity forces in the flow

J (where v denotes kinematic viscosity), influences the field of

disturbance velocities.

Experiments show three possible states of cavitation and

ventilation: the cavitation inception and pre-base ventilation state,

the base ventilation state, and the post-base ventilation state. In

the inception and pre-base ventilation state, the ventilated cavity

is building up behind the strut with increasing speed, reaching down

to a depth somewhere above the strut base. In the base ventilation

state, the bottom of the ventilated cavity springs from the strut-

base. In the post-base ventilation state, the cavity behind the

strut is sealed off at the free surface by the flow, its contents

being vapor (see Fig. 3).

TECHNICAL RESEARCH GROUP
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The boundaries between these states are plotted for struts

of circular cross-section in Fig. 4. Fig. 4 was obtained by analyz-

ing the experiments of A.D. Hay (2]. These experiments were run in

a systematic and extensive program on struts of circular section-

shape. Fig. 4 shows that for fixed d with decreasing IM base1!p
U

ventilation is reached at a, of the order of 0.3 - where the actual
U

magnitude depends on Reynolds number Re = _dd - and that the post-V
base ventilation state is reached at some lower value of an . The

U
effect of Re for this latter boundary is appreciably smaller. The

at this boundary is about 0.005 for 1 of about 1 or 1/2 but
U

dapproaches 0.3 as i tends to 0. This means that, for a comparatively

deep strut, base ventilation cannot be attained at all.

The theoretical approach for the determination of cavity

lengths in the previous section was concerned with the base ventila-

tion state. Here the analysis could be based on the fixed depth

IF z - -H where the cavity rear streamline starts. Certainly the

analysis of Section 2 holds for cavity depths h < H, that is for the

pre-base ventilation state. But here h is theoretically not known;

one certainly could use experimental values of h.

b. Comparisons Not Accounting for the Reynolds Number in

Experiments

Fig. 5 shows a comparison of experimental cavity lengths

with 2D-theoretical and 3D-theoretical results. The experiments are

those conducted by Perry [1) on a strut of rectangular cross-section.

The strut has a fixed submergence (H=8"), fixed width (d-1/8") and

TECHNICAL RESEARCH GROUP
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various speeds (U - 10, 12, 15 fps). The parameter 1 is ; the

parameter H is 0.095, 0.148, and 0.215. Reynolds number as occurring
U

in the experiments is not taken into account.

The improvement obtained here by use of 3D-theory is

obvious: the 3D-theoretical lengths in z - 0 are finite, the 3D-

theoretical lengths in 0 > z > -H agree better with experiment.

Quantitative agreement is good in the case of high speed (low n) but
U

deteriorates with decreasing speed (An getting larger). Considering
U

the limitations of the theoretical approach, we did not expect good
quantitative agreement for all combinations of parameters d ,

U
and Re. The theory can be interpreted as developed for 1= 0 (no

j lateral dimension), Re = w (no viscosity). Certain z-velocities

were assumed in the cavity rear streamline.

We next try to find the ranges of parameters d andH
U

r where best agreement can be found with the Hay experiments [2) .*

First we ignore the effect of the Reynolds number in the

experiments. We consider cases where const., = variable.
U

See:

d 1 lit
Fig. 6 for = 6, based on d = g , H - 2

d l 1"i
Fig. 7 for it=TT , based on d - , H- ,

* To understand the parameter variation carried out in the following,
the reader should look up Fig. 4 of this paper and see that with

the variation of (when 1 is fixed) we horizontally cross the
U

dphase of base ventilation and that with the variation of i (when
is fixed) we vertically cross the phase of base ventilation in

U
Fig. 4.

TECHNICAL RESEARCH GROUP
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Fig. 8 for d , based on d 1  H = 1"

dFig. 9 for =1 , based on d - 2" H -2"

Each figure shows a series of cases for decreasing . (The

Reynolds number applicable to the individual experiment is indicated

for informative purposes.) In each figure length increases as
U

approaches 0 from both experiment and theory. However, the rate of

increase in the experiments is always higher than that in theory.

Thus, agreement is possible if at the transition from the

pre-base ventilation to the base ventilation state lexp. is pre-

dominantly less or equal to £theor. on the rear line. Thus, in

Fig. 6 (at a 0.18) and in Fig. 7 (at £a0 0.085) we find a for
UU U

which some agreement can be observed; this is not true in Fig. 8 and

Fig. 9.

Still ignoring Re in the experiments, we next consider

cases where -H = const., d = variable. See

Fig. 10 for - 0.214
U

Fig. 11 for I 0.084

Each figure shows a series of cases for increasing . (The Reynolds

number applicable to each experiment is indicated.) In these series,

the experimental lengths increase with increasing I- up to some-

where around W or it With approaching 1 they no longer

TECHNICAL RESEARCH GROUP
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change monotonically and they vary at lower rates. The theoretical
lengths, however, are always constant (as UR) since was not included

U
in the theory. Thus, agreement is found somewhere in the range

0 < < 1 if, for the chosen and small Wt I is predominantlyu ~ T'exp.

equal or less than Atheor. over the rear line, and only then. Thus,

in Fig. 10 we find at 1 1.3 some agreement but not in the series of

Fig. 11.

Summarizing now Figs. 6 through 11 we have the following:

For -all I d 1 fair agreement can be found. For higher

ddR agreement is not possible. At the transition from the pre-base

ventilation to the base ventilation state for such d ex > A1! 'exp. theor.
over the rear line and both the approach of lto and the approach

of f to 1 tend to increase 'exp. over theor.* The influence ofR

is essential. The change in lateral dimension d, however, affects

also the Reynolds number Re = U d The theory does not account for
the effects of d and Re.

Before taking Re into account when selecting the experi-

ments, we wish to draw attention to the relation with the Perry series

(Fig. 5), where our comparisons did originate. There, for d- . ,

the best agreement is at = 0.095. The corresponding series in the

Hay experiments is in Fig. 6 and Fig. 7. Here we find d - 1 and

best agreement at aAm0.18 (Fig. 6) and atý uo 0.085 (Fig. 7).
U U

Thus, we find a shift in 1 and a possible shift in A. We do not
U

find a direct agreement with the Perry case.

TECHNICAL RESEARCH GROUP
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The shift in I is certainly connected with the difference

in shape (rectangular vs. circular). The point is that in the experi-

ments with the circular struts, there is no base ventilation at all

for - ;for = ,base ventilation exists over a comparatively

narrow range of it (sRFg o and it V . Thus the

Hay series corresponding to that of Perry is found at a higher d
only. Here base-ventilation occurs over a 0-range of comparable

width.

c. Comparisons Accountina for Reynolds Number in the Experiments

In a series of additional comparisons we took account of

Udthe Reynolds number, Re - 0 , with v - 1.58 • 10-3 sq. inch/sec at

680F, the average temperature of the experiments. We found that the
basic influence of the parameters .. and d is not changed when Red

Ui

constant in the experiments. WithZU approaching 0 the experimental

cavity length increased and with I approaching 1 it increased, as

seen earlier.

We were led to this result by comparing cases where

, - conat•, Re • conet•, d variable .. •. series (a) ,

const., Re :w const., • -variable ..... series (b)

The above results were obtained at several constant Re numbers. The

actual numerical value of each Re was

for the series (a) between 4.9 • l03 and 9.4 • 104 ,

for the series (b) between 0.8 • 104 and 8.7 • 104•

"TECHNICAL RESEARCH GROUP
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We did not show a comparison of series (a) and (b). Having no valid

theory, we have no basis to discuss the modifications brought about

by the effect of Reynolds number.

We do show, however, the effect of Re in the following

comparisons with

d o . cRe = variable .... series (c)
S=const., =const.,

in Fig. 12. Fig. 12 in particular holds for

d 1 , - 0.084, 1.08 • 104 < Re N 2.45 - 10
U

The result is that with increasing Re the experimental cavity length

increases. This trend was also observed for a number of additional

combinations, for example for

f H 0 07 .e • 104 •Re .8.65 * 10

~U os 0.107 1.08* 104  Rel7 0

d 1 H 0

- =• •0.107 2.1

d , am 0.214, 5.3 10 3  Re. 1.53 104
U

0.214, 4.35 10 3 .•Re. 3.07 * 10
U

But the influence was not as strong in other observed combinations.

Whatever the proper dependence may be, it is evident that the influence

of Re in the case of the circular struts for certain combinations of

TECHNICAL RESEARCH GROUP
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parameters uH , 1 and Re is appreciable. The effect of Re on the
u

transition from the pre-base ventilation state to the base ventila-

tion state was shown numerically in Fig. 4.

TECHNICAL RESEARCH GROUP
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4. COMPARISON OF THEORETICAL CAVITY DRAG IN TWO-DIMENSIONAL

THEORY WITH EXPERIMENTAL DRAG

Ventilated flow in two-dimensional theory is treated in

a system of plane horizontal flow layers. If U, d, and the section

shape are variable over depth z, the cavity drag on a vertical

strut is computed by

0

(22) F -. f-h U2(dz)cD(z)dz

with p the mass density, d the lateral dimension of strut section,

cD the drag coefficient of section and h • H cavity depth on the

strut. The z-dependence in cD actually is the dependence on the

cavitation number a(z); for small a

f (23) CD(a) ' cD(0) [1 + a]

"where a is the nominal cavitation number of the incident flow

(24) a(z) = 2
U

The cD(O) coefficient is known for a number of strut section shapes.

(circular: cD(0) - 0.5; rectangular: CD(0) - 0.88; etc.) For

constant U, d and constant section-shape and for small a Eq. (22)

reduces to

(25) F. CD(0) [I.U2 +½ 71hJ d h , - gp

TECHNICAL RESEARCH GROUP
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We compare this theoretical cavity drag with the experi-

mental strut drag of Hay [2]. This is presented in Figures 13 through

19. In these figures the experimental drag curves, the transitions

between the different flow states and the theoretical strut cavity

drag for the base ventilation state are given.

In the pre-base ventilation state, the experimental drag

contains an appreciable friction drag. We cannot separate it from

the cavity drag. This is the reason why we give no comparisons for

the pre-base ventilation state. (The fact that in this state h is

theoretically unknown would be no obstacle. It could be taken

from the cavity side photos in (2) for all cases.)

In the base ventilation state, the experimental drag

- still contains a friction drag. Its contribution is also unknown,

but it is considered small in the prevalent case of a circular

strut cross-section. (For a confirmation of theory, the experi-

mental values always should be slightly larger than the theoretical.)

For the base ventilation state the agreement between the

experimental and theoretical drag is fairly good. Of the 13 series

investigated, 10 series show discrepancies of 10% or less ffbmk the

experimental value. Two series contain a discrepancy of about 13%;

one - see Fig. 17 - displays a 337. difference.

The good agreement in the large majority of cases is

surprising, since the nominal cavitation number in the flow layers

of the two-dimensional model range from zero (at z - 0) to 0.6

(at z - -H). (We know definitely that the number is 0.6 since we

TECHNICAL RESEARCH GROUP
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found the transition from the pre-base ventilation state to the base

ventilation state at I 0.3 - see Fig. 4.) Equation (25), however,
U

is based on the assumption of small a. The good agreement is a fact.

However, we do not know the meaning of the 33% difference in Fig. 17.

Further comparisons similar to those carried out in this report

should be investigated.

We conclude this section with an observation on the

experimental strut drag at the transition from the base ventilation

state to the post-base ventilation state. In this transition, the

strut drag possibly jumps discontinuously to a higher level (see

Figs. 15, 16) or starts increasing (with speed increasing) at a

steeper gradient (see Fig. 14). This is the reason why in a low-

S-drag-system the post-base ventilation state is problematic.

The physical reason for the discontinuous behavior of

drag is most likely, that the pressure in the closed cavity is due

to vapor. Representing an under-pressure in the strut rear -

reference-pressure is the atmospheric pressure - it acts as a drag

increment.

TECHNICAL RESEARCH GROUP
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5. RESULTS

Cavity Lenaths:

The three-dimensional theoretical analysis of cavity

lengths took account of the speed parameter H. only. The parameters
d U-
if and Re were not considered. We obtained fairly good agreement with

farl godareetHt
experimental lengths for small d at some . in the base ventilation-

Uflow state. On the other hand, the theoretical lengths on the basis

of the two-dimensional cavity theory do not agree with experiment.

The discrepancies between the 3D-theoretical length and

the experimental length as obtained for the majority of parameter

combinations were investigated. It was found that the influence
of £ as given by the theory is too weak compared with the influence

U
of ,KH from the experiment. The influence of the theoretically

U d
ignored parameter I was found to be essential as is also the

influence of the Reynolds number Re = A in some ranges.V
With these results, a basis is given for possible further

development of cavity shape theory in ventilated flow. There seems

to be a guide now on how to include l and .
U

The information about the different states of flow as

obtained from our analysis of Hay's experiments seems to have direct

application. Designers shsould obtain experimental graphs of the

kind of our Fig. 4 for struts of practical cross-section. This will

serve

(a) to compare the intended operating range of their system

with the occurring base ventilation range,

(b) to stay away from the "sealing off" effect in the flow and

the different, cavitated flow thereafter.
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Cavity drag:

The agreement between the experimental and theoretical

cavity drag determined on the two-dimensional basis is fairly good.

In the majority of cases considered the difference is of the order

of 10%.

However, we have no final result as to the degree of

agreement since higher differences also occurred in the comparisons.

The strut drag (cavity drag) with higher speeds reaches

comparatively high values once the strut cavity is sealed off from

the atmosphere. This behavior was shown in the experiments used

in this study.

T
I.
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6. Conclusions, Recommendations

In our opinion there are two main practical applications

of ventilated flow theory:

1) the prediction of cavity drag force,

2) the prediction of the various flow states.

The prediction of cavity shape may be important in some special

cases and this may be a third application.

We suggest additional work to establish theoretical and

experimental data that further meet practical requirements.

Further comparisons should be carried out between experi-

mental and 2D-theoretical drag on struts of practical shape, and

yaw and sweepback should be included. It is important that future

results yield the range of strut and flow parameters where the two-

dimensional drag prediction holds. Outside of that domain, it may

f be possible to predict drag on the basis of a three-dimensional

flow analysis; such an analysis has been initiated in this report.

t With respect to the prediction of the flow states, which is

particularly important because of the cavity seal-off problem, we

suggest in Section 5 that experimental results be examined and the

scheme used in this report be again applied. The three-dimensional

theoretical analysis of the cavity shape can, after further

development, possibly contribute to these matters.
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